
SOUTH BERNALILLO, N.M. AREA ATHENA AVENUE POND AND COLLECTION SYSTEM FEASIBILITY STUDY

PREPARED BY:

WILSON & COMPANY, INC. 2600 THE AMERICAN ROAD SE RIO RANCHO, NEW MEXICO 87124 (505) 898-8021 PREPARED FOR:

MARCH 2011

SOUTH BERNALILLO, N.M. AREA ATHENA AVENUE POND AND COLLECTION SYSTEM FEASIBILITY STUDY

MARCH 2011

and that I am a d	y certify that this rep uly registered Profe	

Angela N. Valdez, P.E.

NMPE #15814

Date

Table of Contents

1	Inti	oduction	. 1
		Authority	
1	.2 F	Purpose	. 1
1	.3 (Goals and Objectives	. 1
		sting Conditions	
		Vatershed Description	
2	.2 E	Existing Drainage Patterns	. 2
2	.3 (Geotechnical Study	. 3
3	Hyd	drologic Analysis	. 3
4		posed Improvements	- 1
4		ond Alternatives	
	4.1.1	Pond Alternative 1	8
	4.1.2	Pond Alternative 2	. C
		Pond Alternative 31	
	4.1.4	Pond Alternative 41	1
5	Sur	nmary and Recommendations1	2
		idix1	

1 Introduction

The *Drainage Master Plan and Needs Assessment* prepared for the Eastern Sandoval County Arroyo Flood Control Authority (ESCAFCA) by Wilson & Company in 2008 identified several drainage issues within the Town of Bernalillo. This report analyzes an area in South Bernalillo Watershed identified in the mentioned report as the problem area with reported flooding problems.

1.1 Authority

The Eastern Sandoval County Arroyo Flood Control Authority (ESCAFCA) is a political subdivision of the State of New Mexico. ESCAFCA's purpose is to acquire, equip, maintain, and operate a flood control system for the benefit of the residents of Eastern Sandoval County. ESCAFCA has authorized Wilson & Company to conduct this feasibility study on its behalf.

1.2 Purpose

The purpose of this report is to present a feasible underground storm drain system and temporary retention Alternative for the area in the South Bernalillo watershed that would mitigate flooding impacts to private property, public roadways, and ditches maintained by the Middle Rio Grande Conservancy District due to flows originating from the I-25 right-of-way and large basins upstream of I-25. Based on available mapping, analysis, and anecdotal information, it is the runoff from these large basins that cause the majority of the flooding problems in the South Bernalillo area. This report provides a conceptual analysis of retention and conveyance system and includes concept level cost estimates. This report is intended to serve as an aid to the ESCAFCA board in prioritizing the steps needed to mitigate flooding problems in the area.

1.3 Goals and Objectives

The goals and objectives of this report are to:

- a. Evaluate existing drainage patterns and flooding potential within the study area
- b. Recommend most suitable retention and conveyance system for the project site

2 Existing Conditions

Drainage problems in South Bernalillo Watershed like most of the areas in the ESCAFCA jurisdiction are due largely to the lack of adequate stormwater conveyance capacity between I-25 and the Rio Grande. Thus, large rainfall events have historically resulted in stormwater damage to private businesses, residences and public roadways.

2.1 Watershed Description

The project area is located in the South Bernalillo Watershed and majority of it is developed with residential properties. The area is flat and slopes in northeasterly to southwesterly direction. The area is bounded by South Hill Road and Bernalillo Acequia to the east, BNSF railway to the west, NM 550 to the north and Richardson Drive to the south. The project site was identified as problem area per Drainage Master Plan and

Needs Assessment prepared by Wilson & Company Inc. Figure 1 is a location map for the study area.

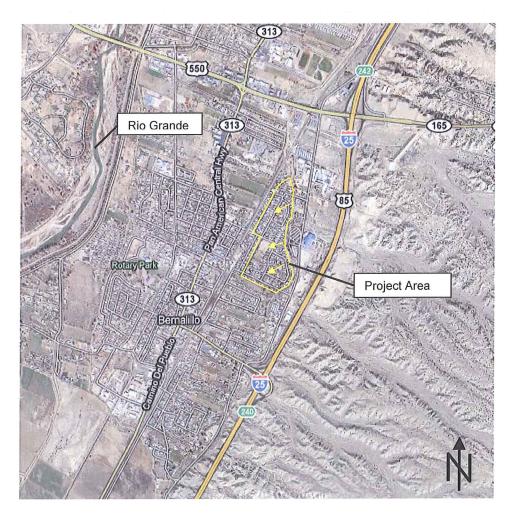


Figure 1 – Location Map

2.2 Existing Drainage Patterns

The South Bernalillo Watershed historically discharged to the Rio Grande. The watershed is south of NM 550. Majority of drainage problems in South Bernalillo watershed south of NM 550 occur between the BNSF railway and I-25. Runoffs upstream of I-25 are conveyed through existing culverts and sheet flow in a southwesterly direction to South Hill Road and pond against the Bernalillo Acequia embankment.

The MRGCD maintains an extensive network of acequias, canals, laterals, and drains within the ESCAFCA jurisdiction. Bernalillo Acequia is located downstream of South Hill

Road and conveys some flows south but during large storm event runoff overtops the Acequia and causing damage to adjacent private properties.

Due to flat grades and lack of conveyance system, accumulated runoff pond in the area and cause flooding during major storm event. The overall flow path is to south and southwest with BNSF railway blocking the runoff sheet flowing west. The existing residential development west of South Hill Road block the natural drainage path from east of I-25 and are at risk of flooding in large storm events. In some areas the street grades are higher than the adjacent properties causing flooding. Flooding has caused less damage to the areas that include mobile homes due to their raised elevation.

No topographic mapping was performed for this study and Lidar mapping was used to determine existing drainage patterns. Lidar mapping used was provided by Bohannan Huston, Inc. for the Town of Bernalillo. Due to the flat grades a detailed topographic mapping is recommended prior to final design.

2.3 Geotechnical Study

Amec Earth and Environmental, Inc. performed a field study to determine depth of groundwater below the referenced site. Two borings were drilled at the site to a depth of approximately 20 feet below existing grade. The soil samples indicate that the site consists primarily of sandy clay (CL) overlaying relatively clean sand (SP, SP-SM). The sandy clay is of medium plasticity and is moderately firm to firm in consistency. The sand is fine grained directly below the clay, increasing in coarseness with depth, is non-plastic, very loose to medium sand and contains a trace of gravel to ½ inch.

Groundwater was encountered at a depth of 13.5 to 13.75 feet. The Study recommended a maximum excavation depth of 9 feet below existing grade and subgrade soils suitable for construction of dry wells. Dry wells are vertical holes in ground filled with rocks designed to remove surface water.

3 Hydrologic Analysis

A hydrologic analysis of the watershed was completed using the Arid Lands Hydrologic Model (AHYMO) software. AHYMO computes a hydrograph for each sub-basin based on its physical properties. These hydrographs are then routed along waterways and drainage paths to determine a peak discharge at points of interest throughout the watershed. The AHYMO simulation developed for the Drainage Master Plan and Needs Assessment was edited and utilized to determine peak discharges and runoff volumes for the basins discharging to the project area. The rainfall depth for the 100-yr storm event was modified in the AHYMO simulation to represent the average rainfall condition for the specific basins draining to the South Bernalillo area. The total rainfall depth was reduced from 3.42 inches to 2.71 inches based on NOAA Atlas 14 precipitation depths to more accurately represent the smaller region tributary to the project area. See Table 1 for Precipitation and Frequency Estimates and Appendix or 100 year storm AHYMO output file.

TABLE 1: P	RECIPITATION	FREQUENCY	ESTIMATES (II	VCHES)
STORM YEAR	15 MIN	60 MIN	6 HR	24 HR
1	0.33	0.54	0.79	1.01
2	0.42	0.70	0.99	1.27
5	0.56	0.94	1.27	1.58
10	0.67	1.12	1.49	1.84
100	1.06	1.77	2.28	2.71

4 Proposed Improvements

The Drainage Master Plan and Needs Assessment identified the project site as the problem area and recognized the need for detention facilities upstream of the project area to alleviate the need for large conveyance system. Until the construction of South Bernalillo Detention Facility is in place, an underground conveyance system and a temporary retention pond can alleviate the flooding issues in the area although not completely eliminating it. The intent of this study is to analyze a system for maximum collection of runoff in the area and retaining it until an outlet from the pond can be added for a permanent detention facility.

The modified AHYMO model developed for the Drainage Master Plan and Needs Assessment was utilized to determine peak discharges and runoff volumes contributing to the proposed retention pond. Basins 304 and 306 of South Bernalillo Basins were used to determine the peak flow and runoff volume for the project site. See Watershed Area exhibit in the Appendix and Table 2 for Basin Summary.

	TABLE 2: BASIN SUN	//MARY			
DRAINAGE AREA (AC)	STORM YEAR	100	10	5	2
63.0	Q Peak (cfs)	97.0	52.1	41.0	27.6
63.9	Volume (ac-ft)	8.2	4.8	3.8	2.8
76.7*	Q Peak (cfs)	114.8	61.6	48.4	32.6
76.7	Volume (ac-ft)	9.9	5.7	4.6	3.3

^{*} POSSIBLE WITH DEEPER POND

Table 3 is a detailed list of all the contributing sub-basins for different storm year event.

	TABLE 3: SUB-BASIN PEAK FLOW AND RUNOFF VOLUME									
	BASIN ID	AREA	Q ₁₀₀	V ₁₀₀	Q_{10}	V ₁₀	Q٥	V_5	Q_2	V ₂
	DASIN ID	AC	CFS	AC-FT	CFS	AC-FT	CFS	AC-FT	CFS	AC-FT
	101	3.57	6.3	0.46	3.5	0.27	2.7	0.22	1.9	0.16
_	102	11.47	20.4	1.49	11.1	0.86	8.8	0.69	6.0	0.50
304	103	1.98	3.5	0.26	1.9	0.15	1.5	0.12	1.0	0.09
SB	105A	2.98	5.3	0.39	2.9	0.22	2.3	0.18	1.6	0.13
	104	7.97	11.1	1.02	5.9	0.59	4.6	0.47	3.1	0.34
	105B	3.51	4.9	0.45	2.6	0.26	2.0	0.21	1.4	0.15
	106	11.72	16.4	1.51	8.7	0.87	6.8	0.70	4.6	0.50
	107	6.64	9.3	0.85	4.9	0.49	3.9	0.40	2.6	0.28
	109	7.15	10.0	0.92	5.3	0.53	4.2	0.43	2.8	0.31
306	110	6.94	9.7	0.89	5.2	0.51	4.0	0.41	2.7	0.30
SB	TOTAL	63.93	97.0	8.24	52.1	4.76	41.0	3.82	27.6	2.75
	108	6.14	8.6	0.79	4.6	0.46	3.6	0.37	2.4	0.26
	111	4.74	6.6	0.61	3.5	0.35	2.8	0.28	1.9	0.20
	112	1.84	2.6	0.24	1.4	0.14	1.1	0.11	0.7	0.08
	TOTAL*	76.65	114.8	9.88	61.6	5.71	48.4	4.58	32.6	3.30
	* DEEPER	POND								

A pond location is considered at the southeast corner of the intersection of Melissa Road and Athena Avenue. Majority of the proposed site is developed leaving no other location for any other sizable pond. There are several deciding factors in determining the quantity of runoff that can be conveyed into the pond. Direction of existing grades, runoff travel distance, location of the proposed pond and its proximity to existing residential development and high water table in the area which limits the pond depth are some of the major factors in determining the pond retention volume. Different Pond Alternatives are proposed in order to choose which Alternative will be the most feasible one for the community.

Four conveyance systems were analyzed to convey accumulated runoff into the pond. The four systems collect runoff of an area of approximately 64 acres between west of Bernalillo Acequia and east of Carolina drive. The Overall Conveyance Layout exhibit is included in Appendix shows the three conveyance alignments. Plan & profile for the alignments are included in Appendix. Hydraflow Storm Sewer was used to analyze each alignment and determine the required pipe sizes. See hydraulic calculations in Appendix.

The First and Second systems collect runoff from north and northeast of Melissa Road. The Third system collects runoff from north of Athena Avenue. If a deeper pond was allowed to increase the pond depth from 5 feet to 8 feet and lower the invert elevation of pond inlet an additional 3 feet, the runoff contributing area may be increased to approximately 77 acres. Then, this alignment could convey additional runoff from south half of Carolina Drive and Garcia Lane. See Table 2, Basin Summary for information.

The Fourth system conveys runoff accumulated east and southeast of Mountain View Drive. The discharge point of this alignment could not be located in the public right of way and must go through private properties and therefore a need to purchase an easement along the pipe line. The three conveyance systems analyzed in this study convey a total of 97 cfs for the 100-year storm. With possibility of a deeper pond and larger pipes, total conveyance capacity could increase to 115 cfs. See Hydraflow calculations for deep pond in the Appendix.

Different factors play a role in determining the extents of a conveyance system. Factors like flat grades, site sloping in a southwesterly direction and away from the pond, its location and high water table. These factors make it impossible to convey runoff accumulated downstream of the pond and reversing the natural flow direction back into it. These factors are evident in areas southwest of Athena Avenue. See Table 4 for conceptual level cost estimates for the underground storm sewer system. This cost estimate does not reflect possibility of deeper pond.

	TABLE 4: Conceptual Cost Estimate	TABLE 4: Conceptual Cost Estimate for Underground Storm Sewer				
Item	Description	Unit	Unit Cost	Quantity	Total	
1	24" RCP Pipe Class III, Incl. Trench, Backfill & Compaction, (0' to 10' depth), CIP	LF	\$80	1,461.00	\$116,880	
2	30" RCP Pipe Class III, Incl. Trench, Backfill & Compaction, (0' to 10' depth), CIP	LF	\$80	2,435.00	\$194,800	
3	36" RCP Pipe Class III, Incl. Trench, Backfill & Compaction, (0' to 10' depth), CIP	LF	\$80	150.00	\$12,000	
4	Storm Sewer Fittings Incl. Type "C" Curb Inlets, 4' dia Manholes at depth of 0-6', Outfalls	LS	\$175,000	1.00	\$175,000	
5	Underground Infiltration Galleries	LS	\$30,000	1.00	\$30,000	
6	20' wide Easement Acquisition for pipe alignment 4	AC	\$20,000	0.15	\$3,000	
7	Existing Asphalt Concrete Pavement Remove, Dispose & Replace	SY	\$15	3,850.00	\$57,750	
				Subtotal	\$531,680 \$159,504	
			Estim	nated Total	\$691,184	

4.1 Pond Alternatives

Four Pond Alternatives were analyzed to provide a better understanding in selection of preferred Pond Alternative for the area which would alleviate the existing problems until a permanent solution is developed. Peak discharges from the basins contributing to the pond were added to determine the required capacity of each Pond Alternative. It is

intended to discharge runoff to the pond from Bobby Place and Bernalillo Acequia from the north to Garcia Lane from the south. All four Alternatives include a 10 foot wide drivable access and one foot of freeboard. Each alternative can accommodate a field sport activity with approximate area of 36,000 sq. ft and additional area which could be dedicated as playground area. See Table 5 for a summary of each Pond Alternative.

	TABLE 5: POND SUMMARY						
		POND D	ATA		AVAILABL	E VOLUME (A	AC-FT)
ALTERNATIVE	FREEBOARD ELEV (FT)	TOP ELEV (FT)	BOTTOM ELEV (FT)	SIDE SLOPE	TOTAL WITH FREEBOARD	TOTAL WITHOUT FREEBOARD	LOWER LEVEL
1	5057.0	5056.0	5051.0	6:1	15.89	12.40	N/A
2	5057.0	5056.0	5051.0	10:1	13.99	10.59	N/A
3	5057.0	5056.0	5051.0	6:1	13.09	9.71	4.15
4	5055.0	5054.0	5051.0	6:1	8.06	5.47	3.31

Bottom of ponds are graded towards the deepest corner of the pond near the intersection of Athena Avenue and Melisa Road. This grading will provide positive drainage into one corner since there is no outlet from the pond and discourage shallow water Ponding. Also as a temporary solution to drain the pond, underground infiltration galleries will be installed at this location to collect the 1 year storm volume. Dry wells will be needed to drain the collected runoff. A more detailed study is needed prior to design of dry wells.

Different Pond Alternatives, without possibility of deeper pond, are presented in this report to provide full potential of each alternative. Exhibits for each retention alternative are included in the following sections of this report along with cost estimates for each Alternative. To be able to use the maximum retention volume, each Pond Alternative was analyzed using different storm year. See Table 6 for a pond capacity summary.

8	TABLE 6: PON	ID CAPACITY S	SUMMARY		
POND		STORM YEAR			
POND	100	10	5	2	
1	YES	YES	YES	YES	
2	YES	YES	YES	YES	
3 OVERALL	YES	YES	YES	YES	
3 LOWER	N/A	N/A	YES	YES	
4 OVERALL	N/A	YES	YES	YES	
4 LOWER	N/A	N/A	N/A	YES	

A summary of the pros and cons of each Pond Alternative, without possibility of deeper pond, is presented on the Alternatives analysis tables included in the Summary and Recommendations section.

4.1.1 Pond Alternative 1

Pond Alternative 1 has the capacity to contain 12.4 ac-ft with additional 1 ft of freeboard. The pond has a 6:1 side slope and will be 5 feet deep. See Exhibit 1, Pond Alternative 1. The top of pond elevation will be at 5056.00 and bottom elevation at 5051.00. The entire project site will provide retention volume for the accumulated runoff and can retain the 100-year storm. This Alternative will be a single level park and the site can be used for any park or play activity. A cost estimate for Pond Alternative 1 is included on Table 7.

	Table 7: Cost Estimate for	Pond Alt	ernative 1		
Item	Description	Unit	Unit Cost	Quantity	Total
1	Pond excavation	CY	\$4.0	27,170	\$108,680
2	10' Wide Access, 6" Gravel Base Course	SY	\$7.0	2,110	\$14,770
3	Perimeter Fence, Incl. Multiple entry Gates	LF	\$10.0	1,900	\$19,000
4	Furnish and install Play field, CIP.	LS	\$20,000.0	1	\$20,000
5	Sodded Turf, CIP	SY	\$8.5	4,000	\$34,000
6	Play Equipment, CIP	LS	\$70,000.0	1	\$70,000
_	Site Amenities Incl. Picnic tables, Benches,				
7	Trash Receptacles, Bicycle Rack, Shade Structure	LS	\$125,000.0	1	\$125,000
8	Irrigation System	LS	\$80,000.0	1	\$80,000
9	Native grass seeding & Mulch	AC	\$2,500.0	4.34	\$10,850
10	Pathway Lighting	LS	\$50,000.0	1	\$50,000
				Subtotal	\$532,300
			30% C	ontingency	\$159,690
			Estim	ated Total	\$691,990

POND ALTERNATIVE 1 - 6:1 SIDE SLOPES TOP OF POND ELEVATION INCLUDING FREEBOARD = 5057.00 BOTTOM OF POND ELEVATION = 5051.00 VOLUME = 12.53 AC.FT.

2600 THE AMERICAN RD. SE SUITE 100 RIO RANCHO, NM 87124 PHONE: 505-988-8021 FAX: 505-898-8501 www.wilsonco.com PROJECT NAME

ATHENA AVENUE POND & COLLECTION SYSTEM FEASIBILITY STUDY

SHEET TITLE

EXHIBIT 1

PROJECT NO:	0960007007	SHEET NO:
DESIGNED BY:	MDG	1
DRAWN BY:	DEC	1
CHECKED BY:	VAA	1
DATE:	3/2011	1

\IDS\09-600-070-07\CADD\SHEETS\PDND DPT Ldwg 2/24/2011 10:38:24 AN HS1

4.1.2 Pond Alternative 2

Pond Alternative 2 has the capacity to contain 10.6 ac-ft with 1 ft of freeboard. This pond Alternative includes a 10:1 side slope and will be 5 feet deep. See Exhibit 2, Pond Alternative 2. This Alternative will be very similar to the Alternative 1 with the exception of shallower side slopes of 10:1 which will result in less retention volume. This Alternative can retain the 100-year storm and will be a single level park to serve as the local community park. A cost estimate for Pond Alternative 2 is included on Table 8.

	Table 8: Cost Estimate for Pond Alternative 2				
Item	Description	Unit	Unit Cost	Quantity	Total
1	Pond excavation	CY	\$4.0	24,110	\$96,440
2	10' Wide Access, 6" Gravel Base Course	SY	\$7.0	2,110	\$14,770
3	Perimeter Fence, Incl. Multiple entry Gates	LF	\$10.0	1,900	\$19,000
4	Furnish and install Play field, CIP.	LS	\$20,000.0	1	\$20,000
5	Sodded Turf, CIP	SY	\$8.5	4,000	\$34,000
6	Play Equipment, CIP	LS	\$70,000.0	1	\$70,000
7	Site Amenities Incl. Picnic tables, Benches, Trash Receptacles, Bicycle Rack, Shade Structure	LS	\$125,000.0	1	\$125,000
8	Irrigation System	LS	\$80,000.0	1	\$80,000
9	Native grass seeding & Mulch	AC	\$2,500.0	4.34	\$10,850
10	Pathway Lighting	LS	\$50,000.0	1	\$50,000
				Subtotal	\$520,060
			30% Cd	ontingency	\$156,018
			Estima	ted Total	\$676,078

POND ALTERNATIVE 2 - 10:1 SIDE SLOPES

TOP OF POND ELEVATION INCLUDING FREEBOARD = 5057.00

BOTTOM OF POND ELEVATION = 5051.00

VOLUME = 10.77 AC.FT. (INCLUDES 1' FREEBOARD)

2600 THE AMERICAN RD. SE SUITE 100 RIO RANCHO, NM 87124 PHONE: 505-898-8021 FAX: 505-898-8501 www.wilsonco.com PROJECT NAME

ATHENA AVENUE POND & COLLECTION SYSTEM FEASIBILITY STUDY

SHEET TITLE

EXHIBIT 2

PROJECT NO:	0960007007	SHEET NO:
DESIGNED BY:	MDG	1
DRAWN BY:	DEC	1
CHECKED BY:	VIA	1
DATE:	3/2011	1

4.1.3 Pond Alternative 3

Pond Alternative 3 has the overall capacity of 9.7 ac-ft with 1 ft of freeboard. This pond Alternative includes a 6:1 side slope and will have a total of 5 feet of depth. See Exhibit 3, Pond Alternative 3. This Alternative will be a multi level pond. The lower level portion of the pond is 3 feet deep and the upper portion has an additional 2 feet of depth. In smaller storm events only the lower level of pond will retain water and the higher level will remain dry. The lower level of the pond can contain a volume of 4.1 ac-ft. This Alternative can retain up to the 10-year storm. The lower level pond can retain only the 2-year storm. Since the upper level of the pond will remain drier than lower level, it would be better to allocate it for usages such as playground area. A cost estimate for Pond Alternative 3 is included on Table 9.

Table 9: Cost Estimate for Pond Alternative 3										
Item	Description	Unit	Unit Cost	Quantity	Total					
1	Pond excavation	CY	\$4.0	20,420	\$81,680					
2	10' Wide Access, 6" Gravel Base Course	SY	\$7.0	2,110	\$14,770					
3	Perimeter Fence, Incl. Multiple entry Gates	LF	\$10.0	1,900	\$19,000					
4	Furnish and Install Play field, CIP.	LS	\$20,000.0	1	\$20,000					
5	Sodded Turf, CIP	SY	\$8.5	4,000	\$34,000					
6	Play Equipment, CIP	LS	\$70,000.0	1	\$70,000					
	Site Amenities Incl. Picnic tables,									
7	Benches, Trash Receptacles, Bicycle	LS	\$125,000.0	1	\$125,000					
	Rack, Shade Structure									
8	Irrigation System	LS	\$80,000.0	1	\$80,000					
9	Native Grass Seeding & Mulch	AC	\$2,500.0	4.34	\$10,850					
10	Pathway Lighting	LS	\$50,000.0	1	\$50,000					
				\$505,300						
			30% Co	ontingency	\$151,590					
			Estima	ted Total	\$656,890					

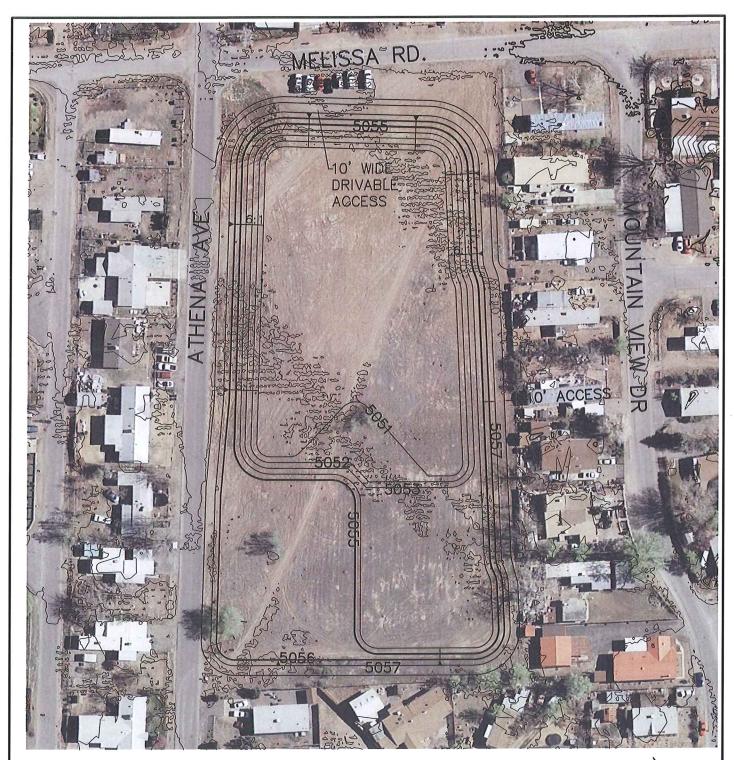
POND ALTERNATIVE 3-6:1 SIDE SLOPES TOP OF POND = 5057.00 WSEL = 5056.00 BOTTOM OF POND = 5051.00 VOLUME = 9.70 AC.FT.

2600 THE AMERICAN RD. SE SUITE 100 RIO RANCHO, NM 87124 PHONE: 505-898-8021 FAX: 505-898-8501 www.wilsonco.com PROJECT NAME

ATHENA AVENUE POND & COLLECTION SYSTEM FEASIBILITY STUDY

SHEET TITLE

EXHIBIT 3


١			
1	PROJECT NO:	0960007007	SHEET NO:
	DESIGNED BY:	MDG	
	DRAWN BY:	DEC	
	CHECKED BY:	VIA	
	DATE:	3/2011	

4.1.4 Pond Alternative 4

Pond Alternative 4 has the overall capacity to contain 4.9 ac-ft with 1 ft of freeboard. This Pond Alternative includes a 6:1 side slope and will be 3 feet deep. See Exhibit 4, Pond Alternative 4. Similar to Alternative 3, it will also be a multi level pond. The lower level of the pond is 2 feet deep and the upper level has an additional 1 foot. In smaller storm events only the lower level of pond will retain water and the higher level will remain dry. The lower level of the pond can contain a volume of 3.3 ac-ft. This Alternative can retain up to the 5-year storm. The lower level pond can retain only the 2-year storm. An approximate area of 22,000 sq ft in the southwest corner of the pond which was not included in the pond volume calculations is graded higher than the freeboard elevation of the pond which is expected to remain dry and be fully usable at any time. A cost estimate for Pond Alternative 4 is included on Table 10.

Table 10: Cost Estimate for Pond Alternative 4										
Item	Description	Unit	Unit Cost	Quantity	Total					
1	Pond excavation	CY	\$4.0	25,020	\$100,080					
2	10' Wide Access, 6" Gravel Base Course	SY	\$7.0	2,110	\$14,770					
3	Perimeter Fence, Incl. Multiple entry Gates	LF	\$10.0	1,900	\$19,000					
4	Furnish and install Play field, CIP.	LS	\$20,000.0	1	\$20,000					
5	Sodded Turf, CIP	SY	\$8.5	4,000	\$34,000					
6	Play Equipment, CIP	LS	\$70,000.0	1	\$70,000					
7	Site Amenities Incl. Picnic tables, Benches, Trash Receptacles, Bicycle Rack, Shade Structure	LS	\$125,000.0	1	\$125,000					
8	Irrigation System	LS	\$80,000.0	1	\$80,000					
9	Native grass seeding & Mulch	AC	\$2,500.0	4.34	\$10,850					
10	Pathway Lighting	LS	\$50,000.0	1	\$50,000					
				Subtotal	\$523,700 \$157,110					
			Estima	\$680,810						

POND ALTERNATIVE 4 - 6:1 SIDE SLOPES TOP OF POND = 5057.00 WSEL = 5055.00 BOTTOM OF POND = 5051.00

2800 THE AMERICAN RD. SE SUITE 100 RIO RANCHO, NM 87124 PHONE: 505-898-8021 FAX: 505-898-8501 www.wilsonco.com PROJECT NAME

ATHENA AVENUE POND & COLLECTION SYSTEM FEASIBILITY STUDY

SEAL

SHEET TITLE

EXHIBIT 4

PROJECT NO:	0960007007	SHEET	NO:	
DESIGNED BY:	MDG	1		
DRAWN BY:	DEC	1		
CHECKED BY:	ANV			
DATE:	3/2011			

VOLUME = 7.30 AC.FT.

5 Summary and Recommendations

All ponds were analyzed as retention ponds since currently there is no immediate plan for addition of any outlet from the pond. When the South Bernalillo detention facility is in operation, the outlet from this pond can be connected into that system and function as a detention pond and be a permanent solution for the area. A pump is needed to allow discharge from the pond since the outlet is located downstream of the tying point into the future storm system.

Pond bottoms are graded towards the northwest corner of the pond to discourage shallow water Ponding. Installing underground infiltration galleries in the same area will drain the 1 year storm volume. In the interim conditions dry wells are a good solution to drain the collected runoff. A more detailed study is needed prior to design of dry wells.

One short term Alternative would be placement of roadside ditches to convey runoff to a certain point and then connecting it to the underground storm system. This Alternative is possible for the upstream side of alignment 1 and 2 since the direction of sheet flow is towards the pond. Alignments 3 and 4 are located downstream of the pond and runoff needs to be conveyed through underground storm sewer. Runoff from east of either alignment can travel to a certain point before connecting to the underground storm system. Installing bar ditches require re-grading of all private driveways and installation of driveway culverts. Bar ditches also require regular maintenance. It is assumed that with placement of bar ditches no pavement removal is required. See Table 11, conceptual cost estimate of Combination of Curbed Section and Bar Ditches Section Roadway.

Existing paved streets in some areas are higher than the adjacent residential properties which create local roadside Ponding. To eliminate this problem, topographic mapping of the site and a detailed study of the area is needed to ensure all runoff is directed into the streets. Positive grades need to be provided to convey runoff in the right flow path. To collect all generated runoff, placement of curb and gutter and lowering of street grades would be the best permanent solution. See Table 12, conceptual cost estimate of Curbed Section Roadway.

Table 13 provides an analysis for positive and negative features of each retention pond alternative along with their estimated cost. To provide a usable park/play area for the community, the site will need to be designed with all the necessities and amenities and be maintained throughout the year. A conceptual cost estimate is listed on Tables 7 through 10 under each pond alternative.

TABLE 11: Conceptual Roadway Cost Estimate, Combination of Curb & Gutter and Bar Ditches											
Item	Description	Unit	Unit Cost	Quantity	Total						
1	Existing Asphalt Concrete Pavement up to 4 Inch Thick, Sawcut, Remove & Dispose, CIP	SY	\$6.0	7,350.0	\$44,100						
2	Residential Asphalt Concrete Type A, 2-2 Inch Lifts, CIP	SY	\$5.0	8,800.0	\$44,000						
3	Subgrade Prep, 12 Inch at 95% Compaction, CIP	SY	\$1.7	8,800.0	\$14,960						
4	Aggregate Base Course, Crushed 6 Inch at 95% compaction, CIP	SY	\$7.0	9,680.0	\$67,760						
5	Curb & Gutter, Standard, Portland Cement Concrete, Incl. Subgrade Prep., CIP	LF	\$15.0	6,600.0	\$99,000						
6	Grading areas not to be paved, with less than 2' excavation, CIP at 95% compaction	SY	\$2.0	2,700.0	\$5,400						
7	24" CMP Incl. Trench, Backfill & Compaction, CIP	LF	\$40.0	4,400.0	\$176,000						
8	Driveway Grading	CY	\$12.0	2,000.0	\$24,000						
9	Headwalls at each end of Driveway Culvert		\$110,000.0	1	\$110,000						
			30% C	Subtotal	\$585,220 \$175,566						
			Estim	\$760,786							

	TABLE 12: Conceptual Roadway (Cost Estim	nate, Curbe	d Section			
Item	Description	Unit	Unit Cost	Quantity	Total		
1	Grading areas not to be paved, with less than 2' excavation, CIP at 95% compaction	SY	\$3.0	2,200.0	\$6,600.0		
2	Export	CY	\$3.0	300.0	\$900.0		
3	Existing Asphalt Concrete Pavement up to 4 Inch Thick, Sawcut, Remove & Dispose , CIP	SY	\$6.0	25,350.0	\$152,100.0		
4	Residential Asphalt Concrete Type A, 2-2 Inch Lifts, CIP	SY	\$5.0	30,400.0	\$152,000.0		
5	Subgrade Prep, 12 Inch at 95% Compaction, CIP	SY	\$1.7	\$1.7 30,400.0			
6	Aggregate Base Course, Crushed 6 Inch at 95% compaction, CIP	SY	\$7.0	33,440.0	\$234,080.0		
7	Curb & Gutter, Standard, Portland Cement Concrete, Incl. Subgrade Prep., CIP	LF	\$15.0	22,800.0	\$342,000.0		
8	Lot/Drive Grading to Match	CY	\$12.0	2,000.0	\$24,000.0		
			30%	Subtotal 30% Contingency			
			Est	\$1,252,368			

Alternatives	Pros	Cons	Cost	
Alternatives	Pros	Coris		
D. J. A. D d.	Provides a large retention volume	Pond bottom will contain runoff during big storm event untill complete absorption		
Pond Alternative 1- Pond area covers the whole lot, 6:1 side slope, total retention	Larger or multiple areas can be allocated as play area	May not be usable if retaining runoff	\$691,990	
volume 12.40 ac-ft	Can retain the 100-year storm runoff			
	One level park provides bigger usage area for the neighborhood			
	Provides a large retention volume	Pond bottom will contain runoff during big storm event	\$676,078	
Pond Alternative 2- Pond area covers the whole lot, 10:1	Larger or multiple areas can be allocated as play area	May not be usable if retaining runoff		
side slope, total retention volume 10.59 ac-ft	Shallower side slopes	Less retention volume as compared to Alternative 1		
	Can retain the 100-year storm runoff			
Pond Alternative 3- Multi level pond, 6:1 side slopes, total	Upper level of pond can remain dry and be usable while the lower level retains runoff		\$656,890	
retention volume 9.71 ac-ft	Lower level can retain storm events up to the 10-year storm	Overall volume can retain the 100-year storm runoff	ψ000,000	
Pond Alternative 4- Multi level	deable at all tillies	Retention volume is reduced to provide more usable space	\$680,810	
pond, 6:1 side slopes, total retention volume 5.47 ac-ft				
	Shallow pond			

ATHENA AVENUE POND AND COLLECTION SYSTEM FEASIBILITY STUDY

Appendix

100-YR AHYMO Output

Watershed Areas Exhibit

Overall Conveyance Plan

Hydraulic Calculations

Alignments Plan & profile Sheets

100-YR AHYMO OUTPUT

RUN DATE (MON/DAY/YR) $=03/0$	USER NO. = AHYMO-C-9803C01IINMI
- VERSION	
	HYMO\100YRR~1.D
(AHYMO_97) -	\AE_DATA\CALCS\A
SUMMARY TABLE ($= M: IDS 0973AF \sim 1$
MO PROGRAM S	UT FILE = M
	SUMMARY TABLE (AHYMO_97) VERSION: 1997.02c

3/01/2011 UNMLIB-AH	PAGE = 1 NOTATION						00.	= 2.710	P= 5.00	P= 5.00	P= 5.00	E = 2
(MON/DAY/YR) =03/01/2011 AHYMO-C-9803c01UNMLIB-AH							TIME=	RAIN24=	91 PER IMP=	83 PER IMP=	83 PER IMP=	PAGE
(MON/D AHYMO-	CFS PER ACRE								2.291	2.28	2.283	CFS
RUN DATE USER NO.=	TIME TO PEAK (HOURS)								1.500	1.500	1.500	TIME TO PEAK
1997.02c	RUNOFF (INCHES)								.81665	.81665	.81665	RUNOFF
RSION:	RUNOFF VOLUME (AC-FT)	TING OF	MILEPOST. MP240-MP241)	VILL BE US (ONLY TION,	SHED 7 OF CONC	OUTES IN HYDRO- GRIF- ENDENT			.218	856.	1.612	RUNOFF
HYMO.S	PEAK DISCHARGE (CFS)	EASTERN SANDOVAL COUNTY ARROYO FLOOD CONTROL AUTHORITY (ESCAFCA) STORMWATER MANAGEMENT PLAN AND NEEDS ASSESSMENT WILSON & COMPANY ENGINEERS & ASSOCIATES COMMANDS HAVE BEEN NUMBERED IN AN ATTEMPT TO PROVIDE BETTER ACCOUNTING LOCATION WITHIN THE MODEL'S CODE. COMMAND NUMBERS APPEAR AS "(XX)" NOTES:	EATED BASED ON MILEP S I-25 BETWEEN MP24C MILEPOST MP244-MP245 MP245-MP246 MP247-MP248 > MP248	WITHIN EACH WATERSHED, MAJOR BASINS (THOSE WITH >1 SUBBASINS) WILL BE DESIGNATED WITH A NON-ZERO VALUE IN THE 100s DIGIT; MINOR BASINS (ONLY I SUBBASIN) BE DESIGNATED WITH A ZERO IN THE 100s DIGIT. SUBBASINS ARE NUMBERED BASED ON ELEVATION AT POINT OF CONCENTRATION, BEGINNING WITH THE HIGHEST PT OF CONC ELEVATION.	BETWEEN MP & MP 1, SOUTHERNWOST MAJOR BASIN OF WATERSHED 7 WITH 23 SUBBASINS WITH A HIGHER PT OF CONC	TIME INCREMENTS HAVE BEEN ADJUSTED TO CAPTURE PEAK FLOWS FOR ROUTES: STEEP AREAS. NOTE THAT THIS PROCEDURE TRUNCATES THE AFFECTED HYDRO-GRAPHS, THEREPORE THE VOLUMES ASSOCIATED WITH THIS MODEL ARE SIGNIF-ICANTLY LESS THAN ACTULAL AND SHOULD NOT BE USED FOR VOLUME-DEPENDENT CALCULATIONS (E.G., ROUTE RESERVOIR, FTC.)			7.33	32.15	54.06	PEAK DISCHARGE
AH = M:\IDS\0973AF~1\AE_DATA\CALCS\AHYMO\100YRR~1.DAT	AREA (SQ MI)	D CONTROL AUTHORITY (S ASSESSMENT ATES TTEMPT TO PROVIDE BET COMMAND NUMBERS APPE/	HAVE BEEN DELINEATED BASED ON DISCHARGE ACROSS I-25 BETWEEN WATERSHED MILEPOST 5000 MP244-MP245 6000 MP245-MP246 7000 MP247-MP248 9000 MP247-MP248	(THOSE WITH > THE 100s DIGI RO IN THE 100s /ATION AT POIN WC ELEVATION.	BETWEEN MP & MP , SOUTHERNMOST MAJOR WITH 23 SUBBASINS WIT	TO CAPTURE PEA JRE TRUNCATES LATED WITH THI NOT BE USED F FTC.)	UNTY		.00500	.02200	.03700	AREA
97) - A\CALCS	OTI 0	LOOD CC EEDS AS OCIATES N ATTEN	AVE BEE ISCHARG WATE 60 70 70	BASINS LUE IN H A ZEF ON ELEY OF CON	ETWEEN SOUTHE ITH 23	USTED PROCEDI ASSOC: SHOULD	SANDOVAL COUNTY		Н	10	11	5 T
AHYMO_ AE_DAT	FROM ID NO.	ROYO F AND N & ASS O IN A	DF I-25 H, BASINS D, ST 1-25 H, 241 1, 243	MAJOR ERO VA ED WIT BASED EST PT	D 7, B SIN 1, 24, W	EN ADJ THIS OLUMES L AND TE RES	SAND		ĭ	ī	ī	FROM
RY TABLE (HYDROGRAPH IDENTIFICATION	EASTERN SANDOVAL COUNTY ARROYO FLOOD COI STORMWATER MANAGEMENT PLAN AND NEEDS ASSULLSON & COMPANY ENGINEERS & ASSOCIATES COMMANDS HAVE BEEN NUMBERED IN AN ATTEM LOCATION WITHIN THE MODEL'S CODE. COMMNOTES:	UPSTREAM OF I SHED 1000 BAS MILEPOST & MP240 MP240-MP241 MP241-MP242 MP242-MP243 MP243-MP243	WATERSHED, I TH A NON-ZI SE DESIGNATI S NUMBERED I TH THE HIGHI	7124 DENOTES WATERSHED 7 DENOTES MAJOR BASIN DENOTES SUBBASIN 24	TTS HAVE BEINDTE NOTE THAT SEORE THE VOTE THAN ACTUAL	ORM		998.00	00.666	1001.00	HYDROGRAPH
PROGRAM SUMMA FILE = M:\IDS	HIDENT	RN SANDOVAL WATER MANAG N & COMPANY NDS HAVE BE ION WITHIN	*S 1. WATERSHEDS UPSTREAM O *S (E.G, WATERSHED 1000 *S WATERSHED MILEPOS *S 1000 MP240-MP2 *S 2000 MP241-MP2 *S 3000 MP243-MP2 *S 4000 MP243-MP2	THIN EACH WESTGNATED WISUBBASIN) BEBBASINS AREGINNING WIT	SIN 7124 7] DENOTE 1] DENOTE 24] DENOTE	ME INCREMEN EEP AREAS. APHS, THERE ANTLY LESS LCULATIONS	EAR 24HR ST	RAINFALL TYPE= 2 *S *S	ASIN 0998 NM HYD	BASIN 0999 NM HYD	(3) BASIN 1001 PUTE NM HYD	I
AHYMO PRO INPUT FIL	COMMAND	*S EASTEI *S STORM *S WILSOI *S COMMAT *S LOCAT.	W W W W W W W W W W W W W W W W W W W	*S 2. WI *S 2. WI *S 3. DE: *S 3. SUI *S 8. SUI *S 8. EX	× * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	START LOCATION *S 100 Y	RAINFALL *S *S	*S *S (1) BASIN 0 COMPUTE NM HYD *S	*S (2) BASIN 0 COMPUTE NM HYD *S	5	n :-

_
5
S
-
S
⋝
I
⋖

5.00	5.00	5.00	5.00	5.00	5.00 5.00 2.0 5.00	5.00	5.00	5.00	5.00	5.00		ж 2	5.00
PER IMP=	PER IMP=	PER IMP=	PER IMP=	PER IMP=	PER IMP= CCODE = PER IMP= CCODE = PER IMP=	PER IMP=	PER IMP=	PER IMP=	PER IMP=	PER IMP=		PAGE = NOTATION	PER IMP= CCODE = PER IMP=
2.283	1.873	1.919	1.919	1.920	1.028 1.009 1.395 .928 1.375	1.439	2.223	2.451	2.452	2.455		CFS PER ACRE	1.396 1.396 1.095 1.256
1.500	1.550	1.500	1.500	1.500	1.650 2.150 1.650 1.650 1.700 1.650	1.650	1.500	1.500	1.500	1.500		TIME TO PEAK (HOURS)	1.850 1.900 1.900
.81665	.81665	. 69064	.69064	.69064	.63394 .63033 .77663 .72743 .72800 .77665	.81665	78987.	.87567	.87567	.87567		RUNOFF (INCHES)	1.04681 1.04770 1.04681 1.04730
2.004	7.579	.737	. 958	.405	5.038 5.009 12.178 17.187 17.200 10.562 27.762	7.840	.421	2.802	.560	.234		RUNOFF VOLUME (AC-FT)	54.936 54.983 43.659 98.642
67.21	208.56	24.57	31.94	13.52	98.04 96.22 262.41 263.14 266.80 224.39 478.84	165.83	14.23	94.12	18.83	7.86		PEAK DISCHARGE (CFS)	879.44 879.42 547.98 1419.66 Page 2
.04600	.17400	.02000	.02600	.01100	.14900 .14900 .29400 .44300 .25500	.18000	.01000	00090	.01200	.00500		AREA (SQ MI)	.98400 .98400 .78200 1.76600
12	13	14	15	16	1218127	18	19	20	21	22	AGNA	0 0 0 0 0	4248
J	ı	1	ţ	I	_ 18_2 3 1&_2	1	τ	1	T	ſ	DEL A	FROM NO.	_ _1 _2 _2
1002.00	1003.00	1004.00	1005.00	1006.00	0 11001 1102.00 1102.11 1103.11 1103.12	1007.00	1008.00	1009.00	2001.00	2002.00	2100 - CANON	HYDROGRAPH IDENTIFICATION	2101.00 2103.1R 2103.00 2103.1+
*S (4) BASIN 1002 COMPUTE NM HYD	*S *S (5) BASIN 1003 COMPUTE NM HYD *S	*S *S (6) BASIN 1004 COMPUTE NM HYD *S	*S *S (7) BASIN 1005 COMPUTE NM HYD *S	*S *S (8) BASIN 1006 COMPUTE NM HYD *S	*S *S (9-15) BASIN 1100 COMPUTE NM HYD ROUTE MCUNGE COMPUTE NM HYD ADD HYD ROUTE MCUNGE COMPUTE NM HYD ADD HYD ADD HYD ADD HYD	*S *S (16) BASIN 1007 COMPUTE NM HYD *S	*S *S (17) BASIN 1008 COMPUTE NM HYD *S	*S *S (18) BASIN 1009 COMPUTE NM HYD *S	*S *S (19) BASIN 2001 COMPUTE NM HYD *S	*S (20) BASIN 2002 COMPUTE NM HYD *S) BASIN	H COMMAND IDENT	COMPUTE NM HYD ROUTE MCUNGE COMPUTE NM HYD ADD HYD

											*		
	5.00	5.00	5.00	5.00	5.00 5.00 5.00 5.00	5.00	5.00		5.00	25.00	4 4		
	PER IMP= CCODE = PER IMP=	ER IMP=	ER IMP=	ER IMP=	PER IMP= CCODE = PER IMP= CCODE = PER IMP=	PER IMP=	ER IMP=		ER IMP=	PER IMP=	PAGE = NOTATION		
	1.299 PI 1.263 1.248 CO 1.006	2.744 PI	2.531 PI	2.743 PI	.861 .855 1.612 Pl .786 1.018 Pl	2.188 P	2.654 P	.652	2.696 P	2.911 P	CFS PER ACRE		
	1.850 1.850 2.550 2.200 2.550	1.500	1.500	1.500	1.750 1.600 1.800 1.800	1.500	1.500	1.800	1.500	1.500	TIME TO PEAK (HOURS)		
	1.04681 1.04710 1.04469 .63393	. 99335	.90773	. 99335	.67848 .67761 .80321 .73853 .73883 .84590	.77665	.95795	.83297	.97565	1.25588	RUNOFF (INCHES)		
	68.001 166.643 166.259 35.399 201.657	. 848	1.646	1.271	8.721 8.710 9.724 18.434 18.391 37.355 55.746	4.308	1.073	55.746 185.785	1.353	.737	RUNOFF VOLUME (AC-FT)	********	
MIIS OMYHA	1012.64 2412.60 2383.27 269.12 2596.29	28.09	55.08	42.13	132.75 131.94 234.25 235.38 229.80 539.28	145.60	35.67	540.52	44.87	20.49	PEAK DISCHARGE (CFS)	***** A I S A	GRANDE Page 3
	1.21800 2.98400 2.98400 1.04700	.01600	.03400	.02400	.24100 .24100 .22700 .46800 .46800 .1.29600	.10400	.02100	1.29600	.02600	.01100	AREA (SQ MI)	ILLOB	ERAL #2 & RIO
	23 2 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1	24	25	26	7278127	28	29	30	31	32	689	N A N	IE LAT
	1& 3 2 - 1& 2	ï	1	1	18 2 18 2 18 2	1	ı	1& 2	1	ı	FROM NO.	8 E R	N BOSQU
	2102.00 2103.2+ 2104.1R 2104.00 2104.1+	2003.00	2004.00	2005.00	0 2201.00 2202.1R 2202.00 2202.1H 2203.1R 2203.1A 2203.1A	2006.00	3001.00	3107.1+ 3100.RES	3002.00	3003.00	HYDROGRAPH IDENTIFICATION	H) – BETWEEN
	COMPUTE NM HYD ADD HYD ROUTE MCUNGE COMPUTE NM HYD *S	*S (30) BASIN 2003 COMPUTE NM HYD *S	*S (31) BASIN 2004 COMPUTE NM HYD *S	*S (32) BASIN 2005 COMPUTE NM HYD *S	*S (33-39) BASIN 2200 COMPUTE NM HYD 22 COMPUTE NM HYD 22 ADD HYD 22 ADD HYD 22 COMPUTE NM HYD 22 ADD HYD 42 ADD HYD 22 ADD HYD 22 ADD HYD 22 AS	*S (40) BASIN 2006 COMPUTE NM HYD	*S (41) BASIN 3001 COMPUTE NM HYD *S	*S ADD HYD RECALL HYD *S	*S (58) BASIN 3002 COMPUTE NM HYD	*S (59) BASIN 3003 COMPUTE NM HYD *S	HY COMMAND IDENTI	S * * * * * * * * * * * * * * * * * * *	*S (353) BASIN SB100
										-	_		

00	00	00. 10. 0. 0.0. 7.0	00 00				000.2			
57.0	57.0	70.00	70.0			10N	80.03			
R IMP=	= IMP=	ER IMP= CODE = ER IMP= CODE = CODE = CODE = CODE = CODE = CODE =	ODE = R IMP= ODE = R IMP=			PAGE = NOTATION	CODE = ER IMP= CODE = ER IMP=			
9 PEF	6 PER		PE C	20.80	Н		38 111 77 CCODI 12 PER : 59 CCODI 18 PER : 50 47			
. 55	1.06	2.742 .026 .032 .031 .041 .2.543 .2.201 .2.201 .2.304 .3.5444 .3.5444 .3.5444 .3.5444 .3.5444 .3.5444 .3.5444 .3.5444 .3.5444	2.648 946 733 3.161 986 .986 .973 .973	1.08	1.201	CFS PER ACRE				
.100	.200	000000000000000000000000000000000000000	8 2200000000000000000000000000000000000	.850	.700	E TO EAK URS)	250 250 250 250 250 250			
m	2	नळने केने ने ने ने ने ने ले के के कि	110100001	нн	Н	TIME PEAI	7778457HHH			
7453	7641	95255 83297 664245 58450 38108 38108 384327 995254 95255 80656 85646 85646 85646 85646 85646	0159 68899 6289 5774 5774 5747 5747 5747	4201 4201	4669	JFF HES)	5327 5327 5356 5356 1615 3759 1707 5366			
1.67	1.67	н нн ннн н нн	H H H	11.7	1.5	RUNO!	1.00 1.55 1.11 1.11 1.10 1.05			
		MO TO THE PROPERTY OF THE PROP		FLOW 7	-	<u>C</u>	***************			
8.844	5.990	LILLO 185.785 185.785 144.937 131.863 15.763 16.836 16.836 16.184 61.894 61.894 61.894 7.237 7.202 84.053	2.904 4.272 8.331 9.983 0.836 2.482 2.965	9.357 9.759	3.410	RUNOFF VOLUME (AC-FT)	4.388 7.353 6.354 6.964 6.964 6.453 7.164			
H		ERNALL 1148, 114, 11, 11, 11, 11, 11, 11, 11, 11, 1	22 848 84 209 212 212 212 212 10	ROM SH	Т	~>0	307 306 306 186 166 174 174			
10.SUM 46	.72		664 669 883 883 16 06	OND FRO 0.00 1.06	00:	B	441 883 113 67 67 67 96 96 96			
AHYMO.3 75.46	45.	AVENIDA 84.24 84.24 178.36.10 330.98 436.29 570.00 58.05 570.00 58.05 570.00 FORD FORD FORD FORD FORD FORD FORD FORD	484. 993. 770. 161. 2603. 2604. 2521.	313	125.	PEAK SCHAR (CFS)	833. 2959. 2959. 2059. 216. 114. 262. 272. 358.			
	LAGUNA	OF AV		ENTION		DI				
21100	8	& N N N N N N N N N N N N N N N N N N N	28600 64100 108000 112700 115700 118500 12300	RET 377 923	5257	REA MI)	04400 044000 044000 06500 06500 06500 06500 06500 06500 06500 06500 06500 06500			
.21	& CALLI	RNS 48 48 48 48 48 48 48 48 48 48 48 48 48		OLUI 1111	POND .162	ARI (SQ I	7.00 44 7.00 88 7.00 88 7.00 88			
	АТ#1	W OF		GOING	ENTION					
62	ЈЕ L 63	HLLO 880 100 100 100 100 100 100 100 100 100	N4w0⊗0⊗444	** **	RETE!	2 2 2 3	NHWH4H0∞0∞			
1	BOSQI	BERNAL 30 8& 9 1 1 9&28 8& 9 8& 9 27 27 27 304 FL	18 3 48 5 48 5 9823 8824 9825 1	306 FL and	**&**	FROM ID NO.	18 3 48 5 1 1 18 2 - 4 - 4 9819 9820			
SB100	BETWEEN SB200		305 305 305 304 404 404 306	BASIN SB306 113.10 1 114.10 and	LOWS	APH	300 307 304 304 304			
SB	Ţ	SB300 - S SB301.UR SB301.UH SB301.UH SB307.1R SB302.UR SB302.UR SB302.UR SB303.UR SB303.UR SB303.UR SB303.UR SB303.UR SB303.UR SB303.UR SB303.UR SB303.UR	SB304.3+ SB304.4+ SB306.1R SB305.0+ SB305.0+ SB305.20+ SB305.30+ SB306.2R SB306.2R	BASI 113 114	ADD FLOWS 115.10 %	DROGR	SB306.3+ SB306.4+ SB306.1R SB307.2+ SB307.2+ SB310.1R SB308.0+ SB308.0+ SB308.20+ SB308.20+ SB308.20+ SB308.20+ SB308.20+			
	SB200		N N N			HYDROGRAPH IDENTIFICATION	w w			
НУР	SIN	BASIN HYD HYD HYD HYD HYD	H H			Ħ	HYD HYD			
Σ W	4) BA E NM	SS-402 SCUNG S	MCUNGE D MCUNGE D MCUNGE	НХО	۵	۵	MCUNG MCUNG MCUNG MCUNG D D			
COMPUTE *S	(354 MPUTE	**S (355-402) BA COMPUTE NM HYD ROUTE MCUNGE ADD HYD ADD HYD ADD HYD ADD HYD ROUTE MCUNGE COMPUTE NM HYD ADD HYD ROUTE MCUNGE COMPUTE NM HYD **S	*S ADD HYD ADD HYD ROUTE MCUNGE COMPUTE NM HYD ADD HYD	*S DIVIDE *S	о нур	COMMAND	*S ADD HYD ADD HYD ADD HYD COMPUTE NM HYD ADD HYD COMPUTE NM HYD ADD HYD			
COMPUTE NM HYD *S *S *S *S *S *S *S *S *S *										

50.00		2.0	50.00		5.00	9 NO	
CCODE = CCODE	ER IMP	CCODE =	CCODE = PER IMP=		PER IMP=	PAGE = NOTATION	
1.856 1.862 1.662 1.066 1.143 1.143 1.687 1.687 1.687	.371	11.6090 11.0990 11.5690 11.5690 11.5660	160 295 254 018	1.752	1.562	CFS PER ACRE	.373 .353 .358
11111111111111111111111111111111111111	2. 2.2.0	11111111111111111111111111111111111111		1.900	1.500	TIME TO PEAK (HOURS)	2.800 3.200 3.200 3.200
1.1008171 1.1008097 1.1008097 1.1008097 1.100809	∞ R000 R	. 56797 . 69063 . 75460 . 73260 . 58387 . 71436	.56444 1.55762 1.42062 1.07918	.99021	.58387	RUNOFF (INCHES)	1.67498 .88670 .89159 .89100
SUM 17.725 17.958 18.918 9.969 27.676 37.645 37.645 37.645 37.645 37.645 37.645 37.645 37.645 37.645 37.645 37.645 37.645 37.668			3.372 19.190 20.457 30.850	34.222	PUEBLO .654 1.612	RUNOFF VOLUME (AC-FT)	24.834 617.946 652.168 653.779
AHYMO.S 375.31 385.24 388.25 124.22 124.22 476.05 598.26 3033.98 3117.18 2825 164.73 164.73 3001.77	72 A B 99 52 42	239127 56.50 56.50 291.35 28.99 83.05		PUEBLO 726.51	S TO SANDIA PU 21.00 53.15	PEAK DISCHARGE (CFS)	91.37 3121.33 3153.51 3153.83
.31600 .32100 .32100 .12000 .69800 .69800 .76700 .708800 .708900 .708800 .708800 .708800 .708800 .708800 .708800 .708800 .708000 .708800 .708800 .708800 .708900 .708900 .708900 .708900 .708000 .708900 .708900 .708900 .709000 .709000 .709000 .709000 .7090000 .709000 .709000 .709000 .709000 .709000 .709000 .709000 .7090000 .7090000 .709000 .709000 .709000 .7090000 .7090000 .7090000 .709000	12.78900 E OF BNSF & S .02800 .03900 .03900		. 11200 . 23100 . 27000 . 53600	TO SANDIA .64800	25/LOS ARBOLE: .02100 .04300	AREA (SQ MI)	. 27800 13.06700 13.71500 13.75800
0/1408/15/18/14/1/	0	,∞oHno∞⊢	14424	NALILLO 65	TO I- 1 66	229	. FLO
8&21 9&22 2 17 17 8& 9 2& 8 4& 5 1& 2 1& 2 1& 2	1& 2 BERNAL 16& 9 1	248 113	38 - 1	BER 4	HILL RD 7 00 - 1+ 10& 1	FROM ID NO.), TOTAL 62&63 2&65 1&64 1&66
SB308. 4U+ SB308. 5U+ SB309. 2R SB309. UR SB309. UR SB309. 4+ SB310. 24+ SB310. 24+ SB31	SB311.1+ SB400 - S SB401 SB401.0+ SB402.0+ SB402.0+ SB402	SB402.0+ SB402.2+ SB402.3+ SB402.3+ SB404.2R SB403.3+ SB403.0+	SB404.3R SB404.3R SB404.4+ SB404.5+	BNSF TO I-25/AVE SB404.6+ 1&	SB500 - SB50 SB500.1	HYDROGRAPH IDENTIFICATION	BERNALILLC SBTOT1 SBTOT2 SBTOT3 SBTOT
ADD HYD ADD HYD ROUTE MCUNGE COMPUTE NM HYD ROUTE MCUNGE ADD HYD ADD HYD ROUTE MCUNGE COMPUTE NM HYD ADD HYD ROUTE MCUNGE COMPUTE NM HYD ADD HYD	*ADD HYD *S *S *S (403-418) BASIN COMPUTE NM HYD ADD HYD ROUTE MCUNGE COMPUTE NM HYD	ADD HYD ADD HYD ADD HYD COMPUTE MCUNGE COMPUTE NM HYD ADD HYD		BERNALILLO, D HYD	*S (419-420) BASIN COMPUTE NM HYD ADD HYD *S	MMAND	*S *S *S *S *S *S *S *S *C *A21-424) SOUTH *AD *HYD *AD *HYD *AD *HYD *S *S *S *S *S *FINISH